Secure SAML validation to prevent XML signature wrapping attacks

Pawel Krawczyk, pawel.krawczyk@owasp.org, Open Web Application Security Project (OWASP)

SAML assertions are becoming popular method for passing authentication and
authorisation information between identity providers and consumers using various single
sign-on protocols. However their practical security strongly depends on correct
implementation, especially on the consumer side. Somorovsky and others' have
demonstrated a number of XML signature related vulnerabilities in SAML assertion
validation frameworks. This article demonstrates how bad library documentation and
examples can lead to vulnerable consumer code and how this can be avoided.

SAML and SAML vulnerabilities

The article by Somorovsky and others describes a number of vulnerabilities caused in most
cases by an incorrect implementation of generally secure SAML model. SAML language is used
to construct authorisation statements (assertions), whose authenticity is protected by XML digital
signature applied over the assertion.

For example, the following XML structure (an identity provider response containing an embedded
and signed SAML assertion) could contain a statement such as “Alice is authorised to use
Secret service”. The assertion has an identifier (1) and the digital signature refers to that
identifier.

P=F wml
¥ [e]| wst:RequestSecurityTokenResponse

xmins:wst
[e] wst:TokenType

P [e]| wsprAppliesTo

¥ [e]| wst:RequestedSecurityToken

> (2] saml:Assertion id (1 11
» [€] Signature for (1)

Most of the attacks demonstrated in Somorovsky and others’ paper are possible because the
application validating SAML token fails to properly and unambigously handle the token structure.
The implementors make a number of assumptions, for example that the token will be always
properly formed XML document, compliant with the SAML schema and with properly linked
references.

One of the attacks described in the paper is executed by constructing a false SAML token with

' “On Breaking SAML: Be Whoever You Want to Be”, Juraj Somorovsky, Andreas Mayer, Jorg Schwenk,
Marco Kampmann, Meiko Jensen, 2012



mailto:pawel.krawczyk@owasp.org
https://www.google.com/url?q=https%3A%2F%2Fwww.usenix.org%2Fsystem%2Ffiles%2Fconference%2Fusenixsecurity12%2Fsec12-final91-8-23-12.pdf&sa=D&sntz=1&usg=AFQjCNFll6uzkHN05TCG0LcB4yuU3jJRfQ

structure demonstrated on the below picture. The original assertion (1) is moved to a wrapper
node and new, malicious assertion (2) is added (saying, for example, that it's no longer Alice, but
Eve authorised to use the service).

F=7 wml
¥ (2| wst:RequestSecurityTokenResponse
xmlns:wst
[2] wst:TokenType
* (2| wsp:AppliesTo
¥ [e]| wst:RequestedSecurityToken
» [g] saml:Assertion (2)
¥ [e| wrapper
* [e] saml:Assertion (1)

* [e] Signature for (1)

Because the original assertion’s body was not modified, the document will still pass digital
signature validation. What happens next depends fully on assumptions made by the
programmers.

Opportunistic programmer versus code examples

XML document processing in Java is non-trivial due to complexity of the programming interface
and that validating a SAML document requires usage of techniques such as namespace
resolution and keystore management. For this reason, most programmers given this task would
immediately resort to tutorials, examples given in vendor documentation and online discussion
forums such as StackOverflow.

Popular documentation and tutorials frequently demonstrate examples that are
bad from security point of view, either because they were intended for brevity
and readability, or because of lack of knowledge.

Most examples on how to select an XML element would use getElementsByTagName method,
which - under Java API - is just the simplest way of doing this. Sample from a 2012 bug report
for JIRA:

NodeList nodes = doc.getElementsByTagName ("saml:Assertion");

The problem with this function is that it returns a list of all requested elements in the
document. A straightforward intuition is that in a properly formed document there will be just
single Assertion tag, which explains why the author just picked the first item here:

element = (Element) nodes.item(0) ;

Unfortunately this approach is exactly what makes the SAML wrapping attacks possible. The
attacker exploits the “single and first” tag assumption by placing a new, malicious assertion
before the original one and this is never detected, because at the same time most of these


http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2F&sa=D&sntz=1&usg=AFQjCNEc58ufm1d4pfZDS_teRkt55LoC8g
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Fapi%2Forg%2Fw3c%2Fdom%2FDocument.html%23getElementsByTagName(java.lang.String)&sa=D&sntz=1&usg=AFQjCNEcTGcXYQ9mHvq1H2AbM83st197XQ
https://www.google.com/url?q=https%3A%2F%2Fjava.net%2Fjira%2Fbrowse%2FWSIT-1631&sa=D&sntz=1&usg=AFQjCNFEwYaW4nrJ2W_i_goPbq06t5XWXQ
https://www.google.com/url?q=https%3A%2F%2Fjava.net%2Fjira%2Fbrowse%2FWSIT-1631&sa=D&sntz=1&usg=AFQjCNFEwYaW4nrJ2W_i_goPbq06t5XWXQ

examples work on XML documents that are not validated.

Oracle documentation uses similar getElementsByTagNameNS method in its XML digital
signature validation example:

NodeList nl = doc.getElementsByTagNameNS (XMLSignature.XMLNS, "Signature");

There is a basic sanity check - whether the document has any signature elements at all:

if (nl.getLength() == 0) {
throw new Exception ("Cannot find Signature element");

}

But presence of superfluous signature elements is not checked and the example goes on to pick
the first element from the list for further processing:

DOMValidateContext valContext = new DOMValidateContext (new KeyValueKeySelector (),
nl.item(0));

Assumptions made by authors in both examples will result in assertion and signature wrapping,
respectively, as described in Somorovsky paper.

Secure validation of SAML assertions

Note: all code samples given below are taken from reference implementation java-saml-validator.

SAML document validation consists of the following steps:

1. Parsing the XML document, which includes structure validation based on supplied
schema;

2. Digital signature validation, which verified authenticity and integrity of the assertion
embedded in SAML document.

The first step, schema validation, might prevent XML manipulation attacks such as wrapping (it
will not if schema contains “any” extensions, see below). The second step, signature validation,
prevents forgery.

Each of these steps has to be successful for the whole validation to complete.
Summary:

e Always perform schema validation on the XML document prior to using it for any
security-related purposes.

Schema compliance validation

XML validation process is performed by the default XML parser supplied as part of standard Java
library. Validation has to be explicitly enabled as it’s not on by default (see below) and proper
schema documents need to be supplied. The first step is to initialize document builder factory:


http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Fapi%2Forg%2Fw3c%2Fdom%2FDocument.html%23getElementsByTagNameNS(java.lang.String%2C%2520java.lang.String)&sa=D&sntz=1&usg=AFQjCNEwlQrxEH-l7xVlnos0FZZdEH7HSg
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F7%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fxmldsig%2FXMLDigitalSignature.html&sa=D&sntz=1&usg=AFQjCNHxxTXL2t7Tst9Zos0EZmAML3nwhw
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F7%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fxmldsig%2FXMLDigitalSignature.html&sa=D&sntz=1&usg=AFQjCNHxxTXL2t7Tst9Zos0EZmAML3nwhw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator&sa=D&sntz=1&usg=AFQjCNEaABt4tQsGbGmjyYGtXcwj4A0Ywg

DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance();

SAML tokens are complex XML documents with a lot of external references, so the factory has to
be put into namespace mode:

factory.setNamespaceAware (true) ;
The parser must be put into validating mode, which is the most important step of the process:
factory.setValidating(true) ;

The next step is to supply the parser with the schema of the validated SAML token. This is also
key step, as all validation will be performed against the schema and invalid or non-existent
schema will result in failed validation.

XML schema security

The parser must be supplied with the schema of the validated document, which is passed in
schemaF1ile parameter below as file path:

factory.setAttribute ("http://java.sun.com/xml/jaxp/properties/schemalLanguage",
XMLConstants.W3C_ XML SCHEMA NS URI) ;

factory.setAttribute ("http://java.sun.com/xml/jaxp/properties/schemaSource"”, new
InputSource (schemaFile)) ;

Schema specifies allowed structure of the XML document and the validation is performed
against the schema statements.

Strength of validation depends depends on schema begin strict in describing the
document’s structure. Schemas may be written using very relaxed, wildcard
statements? in which case malicious structures may still get through validation
stage.

Because of this, solution architects in high security environments should verify third party
schemas prior to using them for validation, even if they come from standardisation bodies.
Schemas should be manually edited and wildcard statements can be removed (“schema
hardening”), as described in RUB paper from 20133,

In addition to that, most XML parsers will use schema namespaces expressed as URLs to
automatically download missing schemas on the run. This has negative impact on both
performance (as downloads are not cached by default) and security (as schema location may
be tampered with).

2 These are xs:any, processContents="lax” (or “skip”)and namespace="4##any” (or
“##other”), according to XSpRES article (2012).

3 Meiko Jensen, Christopher Meyer, Juraj Somorovsky, and Jorg Schwenk, “On the Effectiveness of XML
Schema Validation for Countering XML Signature Wrapping Attacks”, 2013



http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fresearch%2Fpublications%2Fxspres-closer%2F&sa=D&sntz=1&usg=AFQjCNEnEKb5TZr3NlZRfeWWMq9GPu2xdA
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fmedia%2Fnds%2Fveroeffentlichungen%2F2013%2F03%2F25%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNHmLxBLROmowtB_0bHk22tizCw5gw
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fmedia%2Fnds%2Fveroeffentlichungen%2F2013%2F03%2F25%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNHmLxBLROmowtB_0bHk22tizCw5gw

This is an example of an namespace identifier that is schema address at the same time, and
XML parser will use it if download is successful:

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/scap-envelope">

This behaviour should be constrained using parser configuration:

factory.setAttribute (XMLConstants.ACCESS EXTERNAL DTD, "file,jar");
factory.setAttribute (XMLConstants.ACCESS EXTERNAL SCHEMA, "file,jar");

The validation code should implement an EntityResolver class that will supply all required
schemas to the parser on demand. Using the resolver allows better control over the schemas
that are returned and actually returning only schemas that come from a trusted source, were
inspected and, possibly, hardened.

The factory can take one more recommended argument that would limit possibility of a denial of
service attack by resource exhaustion:

factory.setFeature (XMLConstants.FEATURE SECURE PROCESSING, true);

Depending on the implementation of the XML parser there may be additional features available,
some of which are security related. See Xerces features for description and reference source
code for examples.

Finally an actual parser is derived from the factory object:

DocumentBuilder db = factory.newDocumentBuilder();

Summary:
e Always use local, trusted copies of schemas for validation.
e Never allow automatic download of schemas from third party locations.
e If possible, inspect schemas and perform schema hardening, to disable possible
wildcard-type or relaxed processing statements.

Entity resolver

As mentioned above, the XML parser can by default download external schemas but this is
undesirable. When automation is disabled (see above), EntityResolver class needs to be
implemented to deliver schemas to the parser on demand:

SamlEntityResolver res = new SamlEntityResolver();
db.setEntityResolver (res) ;

Full implementation of the EntityResolver class is available on GitHub. Its method is called
on demand by the parser and takes two arguments: publicId and systemId. The latteris the
namespace identifier that XML parser finds in parsed elements. The task of the resolver is to
return schema or DTD contents for this particular URL. Sample extract from the implementation:


http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2F2003%2F05%2Fsoap-envelope&sa=D&sntz=1&usg=AFQjCNGfMX1ZVGPTZcRDvsElhc17DotqKg
http://www.google.com/url?q=http%3A%2F%2Fxerces.apache.org%2Fxerces2-j%2Ffeatures.html&sa=D&sntz=1&usg=AFQjCNG98TJInamQOMT3hxiWGH_58QTawA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FValidator.java%23L162&sa=D&sntz=1&usg=AFQjCNG6rQeTDiWWiLyy1QfVRkbuez61cA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FValidator.java%23L162&sa=D&sntz=1&usg=AFQjCNG6rQeTDiWWiLyy1QfVRkbuez61cA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FSamlNamespaceResolver.java&sa=D&sntz=1&usg=AFQjCNHjbY1bQW_IZEY5gmpGziC90WxlRQ

if (systemId.endsWith ("oasis-200401-wss-wssecurity-secext-1.0.xsd")) {
file = "schemas/oasis-200401-wss-wssecurity-secext-1.0.xsd";

}

Error handler

A validating parser should also use a custom error handler, which will be called by the parser for
any validation errors. Source code of the SamlErrorHandler class will not be shown here, as
it basically only outputs an message for every error (it's available on GitHub)..

SamlErrorHandler err = new SamlErrorHandler () ;

db.setErrorHandler (err) ;
Now the parser is ready to validate the token:
Document doc = db.parse (input) ;

The parse method will load, parse and validate the document for schema compliance and throw
exception if the document is not valid.

XML digital signature validation

Schema validation suggests correct structure of the SAML token, but not authenticity and
integrity of the embedded assertion. For this purpose the digital signature needs to be validated
against a trusted public key of the signer.

W3C XML Signature Syntax and Processing describes the process as “Core Validation”,
referring to step 3 as “Reference Validation” and step 2 as “Signature Validation”. Signer’s
certificate validation using CRL or OCSP is not described in this standard. The process is
described with slightly more details in XML Signature Syntax and Processing Version 2 and
“establishing trust” in the signer’s key is explicitly listed as a requirement. Some further guidance
is provided in XML Signature Best Practices.

Technically, digital signature validation itself is a complex process that should involve the
following steps:

1. Establishing trust for signer’s public key certificate via trust anchor (CA certificate), trust
path validation, revocation and purpose checks*. This is traditional PKI model,
implemented in most SSL implementations and required in heterogenous environment.

2. Cryptographic validation of document signature’s authenticity with signer’s public key to
confirm signature’s authenticity.

3. Cryptographic validation of signed hash of the document against canonicalized hash
computed from received document to confirm document’s integrity.

4 RFC 5280, “Internet X.509 Public Key Infrastructure Certificate - and Certificate Revocation List (CRL)
Profile”,IETF, 2008


https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FSamlErrorHandler.java&sa=D&sntz=1&usg=AFQjCNEwvW6blgTO63XbitMkMM_S7vMKWA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fxmldsig-core%2F%23sec-CoreValidation&sa=D&sntz=1&usg=AFQjCNFRx95NgXeMEvknRLiJ6nzTBG3lDA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fxmldsig-core2%2F%23sec-Processing&sa=D&sntz=1&usg=AFQjCNFChzOKu_WRFa1qfsbtDWtavVeQ0g
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fxmldsig-bestpractices%2F%23bp-validate-signing-key&sa=D&sntz=1&usg=AFQjCNFzyX0wL00NF27LC4ViFLgCAqWg8Q
https://www.google.com/url?q=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5280&sa=D&sntz=1&usg=AFQjCNFdnqDzFjtVQHLlDjQKClhdr_Xuig

Technically, the first step is most complex as it requires validation of certificate features such as
keyUsage, time constraints and revocation status (using OCSP or CRL), repeated for all
certificates in trust path. This is how it works in typical SSL usage scenarios in hightly
heterogenous environment of SSL servers.

Establishing trust

As said before, the digital signature needs to be validated against a trusted public key of the
signer. The word “trusted” is critical here. The signed document will frequently contain public
keys. But as the whole purpose of signature validation is to validate a document coming from an
untrusted source, these keys must be also treated as untrusted. They must not be directly
used for validation until they get validated themselves. Unfortunately, many tutorial
examples fail to explain this in clear and explicit way.

In case of SAML based single sign-on we will usually deal with single identity provider
authenticated by a single certificate, which greatly simplifies the validation process. We can
validate directly against this certificate that we trust explicitly, without the need for full path
validation via trust anchor.

Signature validation using XML Digital Signature API expects a “key selector” function that will
provide the validation engine with proper key for validation, as described below.

Explicit trust

In the simplest scenario the architect would feed a static, trusted public key certificate to the
validation function. They key can be obtained using trusted channel from the identity provider and
stored in application’s configuration. This is the option that we have selected for this article:

XMLSignatureFactory fac = XMLSignatureFactory.getInstance ("DOM") ;
DOMValidateContext valContext = new DOMValidateContext (new StaticKeySelector (keyFile),

signature element);

The staticKeySelector will do just this - return public key component of the X.509 certificate
stored in DER format in file whose name is passed in keyFile parameter (it’s full source code
is available on GitHub). This is the simplest method, but let’s also look at alternatives.

Summary:
e If you only expect only one signing key, use StaticKeySelector. Obtain the key
directly from the identity provider, store it in local file and ignore any KeyInfo elements
in the document.

Kevinfo, KeyValue and X509Certificate elements

As mentioned above, XML signed documents will frequently have hint element KeyInfo that
contains signer’s certificate, public key or just its identifier. While this may be required in
heterogenous environments with many identity providers, authenticity of these keys must be


http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fxmldsig%2FXMLDigitalSignature.html&sa=D&sntz=1&usg=AFQjCNEzARfEmYsysJdIogRAFNzO2FfwjQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FStaticKeySelector.java&sa=D&sntz=1&usg=AFQjCNG936ME-GoSOO2ylQg6y8QSWe63Jg

validated before they can be used for document validation.

XML Digital Signature API documentation for Java SE 6 provides example of key selector
(KeyValueKeySelector) that impressionably consumes the key provided in KeyInfo structure
without any validation. The article briefly mentions its insecurity but offers no secure alternative.

A newer Java SE 7 tutorial (Programming With the Java XML Digital Signature API, code sample
8, class x509KeySelector) makes it even clearer and refers to Java PKI Programmer’s
Guide but still does not link to any secure implementation.

Much better implementation is available as part of Oracle examples collection in
X509KeySelector class. It has the same name as the above class, but it implements logic based
on explicit trust. The trusted key is expected to be stored in local key store (JKS), which can be
created with keytool program. The class would look up the KeyInfo element and if it finds the
certificate in local JKS, it would treat it as trusted for validation.

Summary:

e Again, if you only expect only one signing key, use StaticKeySelector. See
previous section for details.

e If you expect more than one signing keys, use X509KeySelector, the JKS variant.
Obtain these keys directly form the identity providers, store them in local JKS and ignore
any Keylnfo elements in the document.

e If you expect a heterogenous signed documents (many certificates from many
identity providers, multi-level validation paths), implement full trust establishment model
based on PKIX and trusted root certificates.

Signature and Assertion elements

Digital signature in XML document is stored in Signature element. The data whose
authenticity is verified is stored in Assertion element® (namespaces omitted for clarity). Both
these elements must be known to the validation function.

As said before in the context of Oracle tutorial using getElementsByTagName for that
purpose is a bad practice in a document that was not validated against schema and
facilitates signature and assertion wrapping attacks.

Theoretically, after successful schema validation® it should be not likely that the document will
contain structure anomalies such as wrapping, but as mentioned above publicly available
schemas frequently contain relaxed syntax. So while validation limits likelihood of attack, it does
not guarantee that they won’t be present in validated document. Because of this absolute XPath
should be used even on validated documents.

Summary:

5 This article uses Assertion as example, but it depends only on document structure.
% Note that this is only guaranteed if validated against a hardened schema, not containing “any” extensions.


http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fxmldsig%2FXMLDigitalSignature.html&sa=D&sntz=1&usg=AFQjCNEzARfEmYsysJdIogRAFNzO2FfwjQ
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fxmldsig%2FXMLDigitalSignature.html%23wp511424&sa=D&sntz=1&usg=AFQjCNHv-ElCiMDPoIYDXNhNtgsRkXj4iA
http://www.google.com/url?q=http%3A%2F%2Fwww.oracle.com%2Ftechnetwork%2Farticles%2Fjavase%2Fdig-signature-api-140772.html&sa=D&sntz=1&usg=AFQjCNEZwTa9FIWyOcTxJfwWox7S_6TfqA
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fcertpath%2FCertPathProgGuide.html&sa=D&sntz=1&usg=AFQjCNF2C9fsechhz1iThGRf6RxgdfKegw
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fcertpath%2FCertPathProgGuide.html&sa=D&sntz=1&usg=AFQjCNF2C9fsechhz1iThGRf6RxgdfKegw
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fcd%2FE17802_01%2Fwebservices%2Fwebservices%2Fdocs%2F2.0%2Fxmldsig%2Fapi%2Fjavax%2Fxml%2Fcrypto%2Fdoc-files%2FX509KeySelector.java&sa=D&sntz=1&usg=AFQjCNFd1iPCrmo_I6VJ4D4l2tVC9fmyhA
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Fapi%2Fjava%2Fsecurity%2FKeyStore.html&sa=D&sntz=1&usg=AFQjCNGBTrhYO35Z-c8H8i3gnMbpuWII1Q
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Ftools%2Fsolaris%2Fkeytool.html&sa=D&sntz=1&usg=AFQjCNHyx0RQ5YKHBBpyszrlcfWHuFEzEw
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fcd%2FE17802_01%2Fwebservices%2Fwebservices%2Fdocs%2F2.0%2Fxmldsig%2Fapi%2Fjavax%2Fxml%2Fcrypto%2Fdoc-files%2FX509KeySelector.java&sa=D&sntz=1&usg=AFQjCNFd1iPCrmo_I6VJ4D4l2tVC9fmyhA
http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Ftechnotes%2Fguides%2Fsecurity%2Fcertpath%2FCertPathProgGuide.html&sa=D&sntz=1&usg=AFQjCNF2C9fsechhz1iThGRf6RxgdfKegw

e Always validate received XML document against schema prior to any security related
validations.

e Never used getElementsByTagName to select security related elements in an XML
document without prior validation.

e Always use absolute XPath expressions to select elements, unless a hardened
schema is used for validation.

Using XPath to select elements

XPath allows absolute and unambiguous addressing of elements in XML document, which
should be the preferred way to select them for security validation purposes. As discussed above,
even schema validated document may still contains wrapping attacks and using absolute XPath
further limits feasibility of the attack.

For example Web Services Trust Language (WS-Trust) specification would give the following
addresses for these key elements in WST tokens, respectively:

® /wst:RequestSecurityTokenResponse/ds:Signature
o /wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken/saml:Assertion

Samples provided with this article use the following XPath addresses:

® /soape:Envelope/soape:Body
® /soape:Envelope/soape:Header/wsse:Security/ds:Signature

Further protection can be provided by XPath hardening as proposed in 2012 paper on XSpRES,’
a robust XML signature validation interface. The hardening replaces namespace-based
references to elements with very precise references to a specific namespace and element. The
above /soape:Envelope/soape:Body address would be replaced by the following hardened
address:

/*[local-name () ="Envelope" and
namespace-uri () ="http://schemas.xmlsoap.org/soap/envelope/"][1]/* [local-name () ="Body" and
namespace-uri () ="http://schemas.xmlsoap.org/soap/envelope/"] [1]

The reference code accompanying this article provides automatic conversion between
user-supplied XPath and the hardened form used internally.

To run XPath evaluation we need to first initialize the factory and supply a method that will
resolve abbreviated namespaces to their full identifiers (for example, “ds” in “ds:Signature”
will be resolved to full URL for this schema). Full source code of Saml1NamespaceResolver is
available on GitHub.

XPath xpath = XPathFactory.newlInstance () .newXPath();

xpath.setNamespaceContext (new SamlNamespaceResolver (doc)) ;

7 Christian Mainka, Meiko Jensen, Luigi Lo lacono, J& rg Schwenk, “XSpRES: Robust and Effective XML
Signatures for Web Services”, 2012



http://www.google.com/url?q=http%3A%2F%2Fspecs.xmlsoap.org%2Fws%2F2005%2F02%2Ftrust%2FWS-Trust.pdf&sa=D&sntz=1&usg=AFQjCNFjDH3_extUFbvdmfB3YokzsT2tGA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FValidator.java%23L308&sa=D&sntz=1&usg=AFQjCNG7KY8REbjgkOdh8NGz9gNMbFxqZw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FSamlNamespaceResolver.java&sa=D&sntz=1&usg=AFQjCNHjbY1bQW_IZEY5gmpGziC90WxlRQ
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fresearch%2Fpublications%2Fxspres-closer%2F&sa=D&sntz=1&usg=AFQjCNEnEKb5TZr3NlZRfeWWMq9GPu2xdA
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fresearch%2Fpublications%2Fxspres-closer%2F&sa=D&sntz=1&usg=AFQjCNEnEKb5TZr3NlZRfeWWMq9GPu2xdA

Signature element can be now extracted:

Element signature element = (Element)
xpath.evaluate ("/wst:RequestSecurityTokenResponse/ds:Signature", doc,
XPathConstants.NODE) ;

As well as Assertion element:

Element assertion_element = (Element)
xpath.evaluate ("/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken/saml:Asserti
on", doc, XPathConstants.NODE) ;

Signature validation follows with initialising signature factory object:
XMLSignatureFactory fac = XMLSignatureFactory.getInstance ("DOM") ;

In this step StaticKeySelector, as discussed above, is referenced. The argument is file
path to the single, trusted X.509 certificate:

DOMValidateContext valContext = new DOMValidateContext (new StaticKeySelector (keyFile),

signature element);

Finally, actual signature validation is performed:

XMLSignature signature = fac.unmarshalXMLSignature (valContext);

boolean coreValidity = signature.validate (valContext) ;

After positive response was returned from the validation method, the document and assertion
are likely to be authentic.

The validated assertion node should be then passed to the business logic, which implements
“see-what-is-signed” logic as described in Somorovsky’s article (“On Breaking...”, 2012).

Reference source code

A reference source code has been published that attempts to implement most of the above
recommendations. The code is published openly on GitHub®. The code should not be seen as
production-ready implementation but rather an attempt to create a reference implementation in
Java.

Its usage is demonstrated in the attached JUnit test suite. First validator object is created:

Validator val = new Validator ("documents/signerl.der",
"schemas/soap-envelope.xsd",
"/soape:Envelope/soape:Header/wsse:Security/ds:Signature",

"/soape:Envelope/soape:Body") ;

8 https://github.com/kravietz/java-saml-validator



https://www.google.com/url?q=https%3A%2F%2Fwww.usenix.org%2Fsystem%2Ffiles%2Fconference%2Fusenixsecurity12%2Fsec12-final91-8-23-12.pdf&sa=D&sntz=1&usg=AFQjCNFll6uzkHN05TCG0LcB4yuU3jJRfQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator%2Fblob%2Fmaster%2Fsrc%2Forg%2Fowasp%2Fsaml%2FValidatorTest.java&sa=D&sntz=1&usg=AFQjCNErmAXFbRO0VSGZIxBHn-i1qEEEtg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fkravietz%2Fjava-saml-validator&sa=D&sntz=1&usg=AFQjCNEaABt4tQsGbGmjyYGtXcwj4A0Ywg

Its positional parameters are as follows:

signer’s X.509 certificate in DER encoding,

validated document’s schema to validate against,

XPath expression pointing to the digital signature element,

XPath expression pointing to the validated element (Body in this case).

In the next step, setIdAttribute method is used to point the validator to Body element’s
attribute that contains its identifier. It's required both from functional and security point of view:

e SOAP envelope schema does not specify Id field so XML signature validator will throw an
exception if this is not specified.

e Even if it would be specified, some schemas do not specifity it explicitly as ID type, which
would have the same result on newer JDK (1.6.21+).

e Manipulation with the ID element can facilitate attacks.

final String idNamespace =
"http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd";
val.setIdAttribute(, "Id");

Finally, the validation is performed that returns true for valid document and false for invalid:

boolean result = val.validate ("documents/file0O.xml") ;

References

e Juraj Somorovsky, Andreas Mayer, Jorg Schwenk, Marco Kampmann, Meiko Jensen,
“On Breaking SAML: Be Whoever You Want to Be”, 2012

e Meiko Jensen, Christopher Meyer, Juraj Somorovsky, and Jorg Schwenk, “On the
Effectiveness of XML Schema Validation for Countering XML Signature Wrapping
Attacks”, 2013

e Christian Mainka, Meiko Jensen, Luigi Lo lacono, Jo'rg Schwenk, “XSpRES: Robust and
Effective XML Signatures for Web Services”, 2012

e W3C, “XML Signature Syntax and Processing (Second Edition)”, 2008



https://www.google.com/url?q=https%3A%2F%2Fwww.usenix.org%2Fsystem%2Ffiles%2Fconference%2Fusenixsecurity12%2Fsec12-final91-8-23-12.pdf&sa=D&sntz=1&usg=AFQjCNFll6uzkHN05TCG0LcB4yuU3jJRfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fmedia%2Fnds%2Fveroeffentlichungen%2F2013%2F03%2F25%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNHmLxBLROmowtB_0bHk22tizCw5gw
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fmedia%2Fnds%2Fveroeffentlichungen%2F2013%2F03%2F25%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNHmLxBLROmowtB_0bHk22tizCw5gw
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fmedia%2Fnds%2Fveroeffentlichungen%2F2013%2F03%2F25%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNHmLxBLROmowtB_0bHk22tizCw5gw
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fresearch%2Fpublications%2Fxspres-closer%2F&sa=D&sntz=1&usg=AFQjCNEnEKb5TZr3NlZRfeWWMq9GPu2xdA
http://www.google.com/url?q=http%3A%2F%2Fwww.nds.ruhr-uni-bochum.de%2Fresearch%2Fpublications%2Fxspres-closer%2F&sa=D&sntz=1&usg=AFQjCNEnEKb5TZr3NlZRfeWWMq9GPu2xdA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fxmldsig-core%2F&sa=D&sntz=1&usg=AFQjCNE4tzh3GNvx1k44kvyy3eggOYbT6A

